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Abstract. In this paper we consider the modulation of a SQUID ring (a Josephson weak link
enclosed by a thick superconducting ring) by an external electromagnetic (em) field for the
case where the ring remains adiabatically in its ground state. We demonstrate that very good
agreement can be found between experimental modulation data and the results predicted theor-
etically by solving the time-dependent Schrödinger equation for the ring–em-field system. We
also show that the non-linear dynamical coupling between the ring and an external resonant
circuit can influence the exact form of the modulation. Again we find consistent agreement
between experiment and theory.

1. Introduction

Over the last decade or so the macroscopic quantum mechanical behaviour of SQUID rings
(in this work, a single Josephson weak link enclosed by a thick superconducting ring)
has been the subject of much research [1–4]. Although this is just one of the two basic
types of SQUID ring (the other, the so-called DC SQUID, consisting of two Josephson
weak links in parallel in a thick superconducting ring structure), its quantum description
is straightforward. Thus, unlike the DC SQUID, the single-weak-link SQUID ring is not
coupled to an external, incoherent source of current which, to our knowledge, has still to
be dealt with in any adequate fashion quantum mechanically. It is also clear that one weak
link in a superconducting ring is the simplest bound potential problem that we can deal with
in the macroscopic quantum behaviour of SQUID rings.

Within this general field of interest we have recently considered the problem of electro-
magnetically induced quantum transitions between SQUID ring energy levels. This has
required us to solve the time-dependent Schrödinger equation (TDSE) for a SQUID ring in
an electromagnetic (em) field. To make the problem tractable we have restricted ourselves
to considering em fields with free-space wavelengths large compared with the size of the
SQUID ring [5]. For the niobium SQUID rings that we have actually used in experiment (a
few mm in diameter) this means em frequenciesνem in the microwave range (say, a few to
10 GHz). Furthermore, for ultralow-capacitance SQUID rings of this size, the characteristic
ring frequencies (i.e. the separation in frequency units between the ring eigenenergies) are
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typically large compared toνem, i.e. a few hundred GHz compared to a few GHz. This
has made finding accurate solutions for the system TDSE computationally very demanding.
Even so, we have been able to calculate the time-averaged expectation values of the ring
energies as a function of the applied static (or quasi-static) magnetic flux8xqstat. In passing,
we note that the SQUID ring in an em field shares common ground with a range of similar
problems in quantum optics [6].

As we have found [7, 8], there are two features of this time-dependent system which
are of great interest. First, in relatively weak em fields the system can display highly non-
perturbative behaviour, i.e. coherent multiphoton absorption processes tend to be the rule.
This is because the strength of the interaction between the ring and the em field (∼=82

em/23,
where8em is the magnetic flux amplitude of the field) can easily be comparable with the
spacing between the original eigenenergies of the ring, even when8em is only a fraction of a
flux quantum80 (=h/2e). Second, regions of contact are found between adjacent solutions
(the time-averaged energy levels) of the system TDSE at particular values of8xqstat. These
contact regions are to be identified with quantum transitions in the ring, generally involving
multiphoton absorption. For microwave frequencies, and typical SQUID parameters, the
spacing between these transition regions is on the scale of one to a few×10−380 in 8xqstat,
while their widths are an order of magnitude smaller('10−480). These calculations show
that the strong coupling between the SQUID ring and the em fields does allow transitions to
occur between energy levels at field frequencies much lower than indicated by the energy
level separation. Therefore, it would be possible for thermal fluctuations to excite single-
or multiphoton resonances. However, two factors are likely to suppress any thermally
driven excitations. The superconducting shield used to enclose the SQUID rings used in the
experiments described in this paper, and the superconducting rings themselves, do not form
simple black-body cavities. It is unlikely, therefore, that the number of modes available
in such hybrid cavities will have the same frequency distribution as a black body. The
likelihood that the cavities used in the experiments (approximately a few centimetres across)
will have significant numbers of long-wavelength modes at the frequencies required for
resonance is small. In addition, at 4.2 K any cavity modes that are present will tend to have
very small field energies (i.e. low photon numbers/amplitudes). Since the apparent widths
of the multiphoton transitions are highly dependent on the amplitude of the applied field,
the combination of limited long-wavelength cavity modes and small field amplitudes makes
it very unlikely that thermally driven excitations play a significant role in the experiments
described in this paper. Experimental resolution of the contact regions still appears to be just
beyond the capabilities of currently available electronic techniques. Nevertheless, we have
recently reported experimental data which provide supporting evidence for their existence
[9]. Within the limits imposed by our electronics we appear to be observing clusters of
these transition regions spreading over ranges in8xqstat, rather than individual transitions.

These experimental data were collected using a radio-frequency (rf ) reactive technique
which we have refined over the years [10]. In principle this is very simple; the SQUID
ring is inductively coupled to a rf parallel resonant (tank) circuit [11, 12] and the coupled
system is probed using a rf signal of very small amplitude, typically a very small fraction of
a80. Any rapid change in ring energy with external applied flux creates a correspondingly
rapid change in the supercurrent circulating in the ring. This, in turn, generates non-
linear dynamical behaviour in the coupled rf tank circuit which, of course, can be followed
experimentally. Since it is the quantum evolution of the SQUID ring (through the screening
current) which creates the non-linear dynamics in the tank circuit, this dynamics can be
used to infer the underlying quantum behaviour of the ring. For example, we can use this
dynamics to infer the lowest-lying, external-flux-dependent energy eigenvalues of the ring.
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The small-amplitude dynamics of ring–tank-circuit systems is complemented in practice by
the well known large-amplitude ('a few80) SQUID magnetometer characteristics where
the rf voltageVout across the tank circuit is plotted against the input rf drive currentIin.

The rf reactive technique can be used to probe both adiabatic and non-adiabatic
behaviour of a SQUID ring in an em field. As we have demonstrated by computation [7, 8],
adiabatic behaviour, with the ring remaining in its ground state, should be observed when the
em frequency and/or amplitude is sufficiently small. In the non-adiabatic case, at sufficiently
higher frequencies and/or amplitudes, transition regions may develop with a spacing in
8xqstat determined byνem. For the circuit parameter values typical of the point contact
SQUID rings that we have investigated (with a minimum separation between the lowest two
eigenenergies of around 200 GHz in frequency units), the computed changeover between
adiabatic and non-adiabatic behaviour starts at frequencies of a few GHz. This appears to be
seen experimentally. Clearly, in any programme for probing quantum transitions in SQUID
rings using rf reactive techniques it is essential that the adiabatic interaction of a SQUID
ring with a monochromatic em field be first understood and recognized, both as regards
computation and experiment. This adiabatic regime is the focus of the work described here.

2. Adiabatic modulation

We first consider the behaviour of a SQUID ring in terms of the time-independent
Schr̈odinger equation (TISE). We take the geometric inductance of the ring, and the effective
capacitance of the weak link enclosed by it, to be3 andC, respectively. The eigenenergies
Eκ(8x) of the ring (κ = 0, ground state;κ = 1, first excited state etc),80-periodic in the
applied flux8x, can be found by solving the TISE [1, 2]

H(Q,8,8x)9(8,8x) = Eκ(8x)9(8,8x) (2.1)

in the presence of an external magnetic flux8x. Here, the conjugate electromagnetic field
variables for the ring are8, the total magnetic flux in the ring, andQ, the total electric
displacement flux at the weak link, where8 andQ → −i h̄ ∂/∂8 play analogous roles
to position and momentum, respectively. Thus,[8,Q] = i h̄, with the implied uncertainty
relation181Q > h̄/2. In the work reported here we are concerned with the regime in
which 18 < 80,1Q > 2e, termed by us the flux mode from the80-periodicity of its
behaviour. In this mode the ring Hamiltonian can be written as the sum of three terms
(capacitive, inductive and Josephson phase-coherent coupling) and takes the form

H(Q,8,8x) = Q2

2C
+ (8−8x)

2

23
− h̄ν cos

(
2π

8

80

)
(2.2)

whereh̄ν/2 is the matrix element for coherent Josephson pair tunnelling through the weak
link (the critical currentIcrit = 2eν). This Hamiltonian has been derived as a limiting
case of a more general quantum electrodynamic description for the SQUID ring where
both the electromagnetic field and the superconducting condensate in the ring are treated
quantum mechanically [11]. We note that there is another regime of SQUID ring behaviour,
quantum mechanically conjugate to the flux mode, which we term the charge mode. Here,
1Q < 2e,18 > 80, leading to voltage-periodic(2e/C) rather than flux-periodic (80)
behaviour.

The SQUID rings used by us to investigate the adiabatic interaction were of the
Zimmerman niobium point contact (microbridge constriction) type [12], displaying small
critical currents (∼a few µA). Point contact weak links in general have extremely small
cross-sectional dimensions, typically of the order of the pair size. However, the actual
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problem of estimating the effective capacitance of such weak links is not simple. In a recent
series of articles [5, 13, 14] we have developed a fully quantum electrodynamic (QED)
approach to the effective capacitance of the weak link in superconducting rings, taking
the link (condensate) self-capacitance, the SQUID block capacitance and the transverse
(flux-tunnelling) capacitance all into consideration. We find that in this QED analysis
the weak-link self-capacitance ('a few 10−17 F for weak-link spatial dimensions close to
0.1 µm, weak-link critical currents of a fewµA and Fermi velocities in niobium of around
106 m s−1) is in series with the block capacitance ('10−12 F for our block dimensions),
with this series combination in parallel with the transverse capacitance (also around 10−16 F
for our block dimensions). The resultant overall capacitance of the SQUID ring is close to
10−16 F. This appears to be borne out by the many experiments that we have performed
on niobium point contact SQUID rings in both the flux and charge mode regimes [10, 15].
Dealing with the value of the geometric inductance3 of the SQUID ring is much easier. For
a two-hole Zimmerman ring this has been found (i) by direct measurement of the resonant
frequency of the ring with no point contact weak link in place and (ii) by calculation [16].
Both methods yield an inductance very close to that quoted in this work(3× 10−10 H).

Figure 1. The first three flux-dependent eigenenergies found by solving the TISE for the SQUID
parameters ¯hν = 0.0682

0/3 andh̄ω0 = 0.04382
0/3 with 3 = 3× 10−10 H.

To illustrate the form of the flux mode eigenenergies, and using the values of
C (=10−16 F) and3 (3×10−10 H), discussed in the previous section, we show in figure 1 the
first three levels (κ = 0, 1 and 2) where we have taken ¯hν = 0.0682

0/3, corresponding to
a weak-link critical currentIcrit = 2.5 µA. As can be seen, the minimum energy difference
(splitting) (1E01)min between theκ = 0 and 1 states occurs at8x = (n+1/2)80, n integer.
What is also apparent is that where(1E01)min � h̄/

√
3C (as it is in this example) this

minimum splitting is always much smaller than the minimum gaps between theκ = 1
and 2 levels. This relatively very small minimum splitting sets the precise form of the
κ = 0 and 1 states. Given this small splitting, the nature of the quantum mechanical ground
state(κ = 0) is apparent. This ground state comprises a superposition of the progenitor
discrete flux statesn80, n integer, of the thick superconducting ring without a weak link.
These progenitor states would be the parabolic sections of theκ = 0 energyE0(8x) in
figure 1. The weak link allows flux tunnelling into and out of the ring, provided the link
section is comparable with the superconducting penetration depth. This tunnelling acts
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quantum mechanically to create (to lowest order) superpositions of nearest-neighbour flux
states (e.g.n80→ (n± 1)80) with coefficients which are determined by the external flux
applied (modulo80). Equal-amplitude superpositions occur at the half-integer static bias
fluxes8xqstat= (n+ 1/2)80.

With regard to the response of a SQUID ring to an external applied flux, the important
physical quantities are the expectation value of the screening supercurrent flowing around
the ring

〈Is(8x)〉κ = −∂Eκ(8x)/∂8x (2.3)

and its derivative with respect to the external applied flux, the ring magnetic susceptibility

χκ = 3∂〈Is(8x)〉κ/∂8x. (2.4)

As we have already stated, this screening current is almost invariably probed via an
inductively coupled tank circuit with a resonant frequency which is usually at rf('20 MHz)
but may extend up to uhf (400 MHz) or beyond. The (non-linear) equation of motion for
the coupled system is [17]

Ctϕ̈ + ϕ̇

Rt
+ ϕ

Lt
= Iin(t)+ µ〈Is(µϕ +8xqstat)〉κ (2.5)

whereCt andLt are the capacitance and inductance, respectively, of the tank circuit,Rt

is its resistance at parallel resonance,ϕ is the high-frequency flux (rf or otherwise) in the
tank-circuit coil,µ is the fraction of flux coupling between the tank-circuit coil and the ring,
Iin(t) is the time-dependent current (rf monochromatic and/or noise) driving the tank circuit
and8xqstat is the static bias flux applied to the ring. In general, for arbitrary coupling,
the resonance lineshape (including the peak frequencyfrκ and peak amplitudeArκ ) of this
system must be found by solving the full non-linear equation of motion (2.5). However, for
very weak coupling, and in the small-rf-oscillation limit(|ϕ| � 80), the resonant frequency
can be approximated by linearizing (2.5) to yield [1, 10]

frκ = fR√
1+K2χκ(8xqstat)

(2.6)

where fR = 1/2π
√
LtCt is the resonant frequency of the bare tank circuit andK2 =

M2/Lt3 = µ2Lt/3, for a ring–tank-circuit-coil mutual inductance ofM. Clearly, the form
of (2.6) allows us to determine (throughχκ ∝ ∂2Eκ(8x)/∂8

2
x) whether the ring is in its

ground state or in some low-lying excited state. For example, in the ground state, with no
em modulation, the frequency shift pattern comprises a set of sharp, downward spikes set
at 80-intervals in8xqstat. This is, in fact, our experimental test for the ring being in the
ground state. Even within the solutionsEκ(8x) of the TISE (2.1), the first, and subsequent,
excited eigenstates (κ = 0, 1, etc) generate very different frequency shift patterns from the
ground state [1].

We now consider the case of a quantum mechanical SQUID ring subject to a time-
varying em field of the form8x(t) = 8xqstat+ 8emsin(ωemt). Subject to the unitary
transformU = exp(−i8xQ/h̄) the TDSE for the ring takes the form [7, 8](

Q2

2C
+ 82

23
− h̄ν cos

(
2π

80
[8+8x]

)
−Q∂8x

∂t

)
|ψ〉 = i h̄

∂|ψ〉
∂t

. (2.7)

In this paper we are concerned with the situation in which the frequency and amplitude of
the em field are sufficiently low that the ring remains in its ground state with no mixing
in (superpositions) of higher states. This requires that∂8x/∂t be sufficiently small with
respect to the other terms in equation (2.7) that it can be ignored. Under this constraint, the
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adiabatic evolution operator [18, 7, 8] of the system is a diagonal matrix, and the SQUID
ring does indeed remain adiabatically in its initial state. We are thus interested in the case
where the ring is prepared in its ground state and remains adiabatically in this state even
in the presence of an external em field. In this situation adiabaticity is maintained provided
that

∂8x

∂t
� 1

h̄
(1E01)8x=(n+1/2)80

which, in frequency-equivalent terms, is the minimumκ = 0 to 1 splitting. As we have
recently shown [8], this assumption can be validated by solving (2.7) in the adiabatic
limit. For the frequency separations between the ground and first excited eigenenergies
considered in this paper (see figure 1), and for the em frequencies and flux amplitudes used
in experiment, we have demonstrated by solving the TDSE for the system that only the
ground state is modulated; there is no mixing in of contributions from higher states. The
instantaneous (ground-state) energy of the ring can then be written as

E(t) = E0(8xqstat+8emsin(ωemt)). (2.8)

Our interest is, of course, in the response of the tank circuit coupled to the SQUID ring.
Provided thatωem/2π � fR (and 1/Q � 1), which are the conditions found in our exp-
eriments, then the tank circuit is not directly driven by the em field but sees the average
screening current in the ring as it is modulated. For the ground eigenstate(κ = 0) this
average over one period of the external field takes the form

〈I (8xqstat)〉0 =
ωem

2π

∫ +π/ωem

−π/ωem

I0(8xqstat+8emsin(ωemt)) dt. (2.9)

In turn, the average, or modulated, adiabatic magnetic susceptibility of the ringχ0(8xqstat)

is given by

χ0(8xqstat) =
∂〈I (µϕ +8xqstat)〉0

∂8xqstat
. (2.10)

The periodicity of the eigenstates of the SQUID ring means that it is possible to express
each of the states (and their derivatives) by Fourier series

Eκ(8x) = aκ0

2
+
∞∑
n=1

aκn cos

(
2nπ

8x

80

)
(2.11)

for which the coefficientsaκn can be calculated very rapidly. This representation enables us
to perform the averaging integral (2.9) above analytically and it follows that

χ0(8xqstat) =
∞∑
n=1

a0
n(2nπ)

2 cos

(
2nπ

8xqstat

80

)
J0

(
2nπ

8em

80

)
. (2.12)

Here, we see that the modulated susceptibilityχ0(8xqstat) has aJ0 Bessel function depend-
ence as will be apparent in the experimental data presented in this paper.

3. Experimental technique

To follow χ0(8xqstat) we used the rf reactive technique [1, 10], assuming the weak coupled
approximation, after (2.6). The tank circuit, coupled to the SQUID ring, was excited by
means of a small-amplitude current source (corresponding to a flux amplitude at the ring in
the range80/50 to80/100). At some fixed value of8xqstat this constant-amplitude current
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source was swept in frequency across the width of the ring–tank-circuit resonance. The
peak frequencyfr0 and peak amplitudeAr0 of this resonance were recorded,8xqstat was
then incremented by approximately80/100 and the measurement process repeated. This
cycle was repeated many times in order to make plots offr0 andAr0 over a number of80-
periods in8xqstat. With these patterns recorded, the screening current response〈Is(8x)〉0 in
the absence of em modulation could be inferred, either through (2.6) or through solutions of
(2.5). Furthermore, the lineshape offr0(8xqstat) about8xqstat= (n+ 1/2)80 allowed us to
estimate the energy separation(1E01)min. We note again that when(1E01)min� h̄/

√
3C,

we can also infer the form of theκ = 0 and 1 levelsE0(8x) andE1(8x).

Figure 2. A block diagram of the cryogenic SQUID assembly, room temperature receiver
system and spectrum analyser.

In practice the system resonance for each value of8xqstat was recorded using a Rohde
and Schwarz FSAS spectrum analyser operating under National Instruments LabVIEW
virtual instrument software [19]. In addition, this analyser provided the variable-frequency,
constant-amplitude rf excitation current used in our reactive probing. The voltage response
of the tank circuit to this excitation current was first preamplified by means of a GaAs
FET amplifier at 4.2 K, subsequent amplification and detection being achieved by means
of a low-noise room temperature receiver of our own design. The block diagram for the
low-temperature SQUID assembly and the experimental electronics is shown in figure 2.
As mentioned earlier, the SQUID rings used in the experiments reported in this paper were
of the Zimmerman niobium point contact type with weak-link critical currents in the few
µA range. In experiment, the point contact in these ring structures was adjusted,in situ, at
liquid helium temperatures.

In setting up SQUID rings (i.e. by adjusting the point contact in the ring), the large-
amplitude dynamical (Vout versusIin) characteristics are invaluable as a diagnostic tool. The
exact form of these dynamical characteristics is a matter of experimental and computational
convenience. In figure 3(a) we show a particularly useful form. In this figure we present a set
of what can be termed ‘equal-amplitude’ experimental characteristics plotted for a niobium
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Figure 3. (a) Experimental equal-amplitude dynamical characteristics(Vout versusIin) for a
niobium point contact weak-link–rf-tank-circuit system recorded at 4.2 K. (b) Best-fit equal-
amplitude characteristics for the ring screening current computed from the ground-state(κ = 0)
energy of figure 1.

point contact ring–tank-circuit system operated at 4.2 K. Here, the system is driven, as is
traditional, at the resonant frequency of the bare tank circuit(fR = ωR/2π) and the tank-
circuit voltageVout is rf phase-sensitive detected with respect to the drive currentIin. Of
course, it is perfectly practicable to find the two components ofVout which are precisely
at 0◦ and 90◦ relative to Iin. However, these components are usually very different in
magnitude. It is often far better to plot the equal-amplitude characteristics in which these
two components are strictly comparable, as is evident in figure 3(a). In practice, the equal-
amplitude characteristics are found by maintaining the phase difference at 90◦ between the
componentsV x

out andV yout, whilst the phase of both relative to the coherent forcing termIin

is rotated until the average slopes of the dynamical characteristics are the same at largeIin.
Theoretically, the equal-amplitude characteristics can be found by solving the non-

linear equation of motion (2.5) for the coupled quantum–classical system. Knowing3,
µ, Lt, Ct, Rt, Q and the system noise temperatureTN, we can best fit by computation
to the experimental characteristics by a judicious choice of the form of the ground-state
screening current〈Is(8x)〉0 and of the effective weak-link capacitanceC. From our previous
arguments we choose this capacitance to be 10−16 F. We can then infer ¯hν which, for the
characteristics of figure 3(a), we find to be 0.0682

0/3. This value ofh̄ν corresponds to a
weak-link critical currentIc (=2eν) of 2.5µA. In this computer modelling we have included
the rounding effect on these characteristics of a noise source with a noise temperatureTN of
4.2 K. Given the very weak coupling (i.e. smallK2) between the SQUID ring and the tank
circuit (plus the following rf amplifier), it seems perfectly reasonable to take the effective
noise temperature to be the ambient temperature (4.2 K) in our experiments. In figure 3(b)
we show the computed equal-amplitude characteristics which best fit the experimental data
of figure 3(a) withh̄ν = 0.0682

0/3, 3 = 3×10−10 H andTN = 4.2 K, where the screening
current pattern corresponds to the ground-state energyE0(8x) in figure 1.

The small-amplitude dynamical response tells essentially the same story, but with more
experimental resolution. In figures 4(a) and 4(b), respectively, we show the experimental
fr0(8xqstat) andAr0(8xqstat) plots for the ring–tank-circuit system of figure 3, taken at 4.2 K
in the absence of external em fields. Here, the coupling parameter is againK2 = 0.0016 with
a quality factorQ for the coupled system of 930 at a static bias flux8xqstat= n80, n integer.
The very accurately measured bare resonant frequency of the tank circuit (uncoupled from
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Figure 4. (a) The experimental peak frequencyfr0 and (b) peak amplitudeAr0, of a coupled
SQUID ring–rf-tank-circuit resonance as a function of8xqstat for the system of figure 3 with no
em field applied; here,fR = ωR/2π = 23.211 MHz,ϕ = 80/60,K2 = 0.0016,Q = 930 and
T = 4.2 K.

Figure 5. The best-fit ground-state ring screening current pattern〈Is(8xqstat)〉0 for the exp-
erimental frequency shift data of figure 4.

the SQUID ring) was 23.211 MHz and the rf signal level was80/60. By inspection, it
is apparent, via (2.6), that the ground-state screening current response〈Is(8xstat)〉0 of the
SQUID ring is quite close to a sawtooth pattern, with a relatively small splitting at half-
integer bias. Using the data of figure 4(a), and the ring–tank-circuit parameters of figure 3,
we can best fit this response with ¯hν = 0.0682

0/3. For3 = 3×10−10 H andC = 10−16 F
this makes the minimum splitting frequency at8xqstat= (n+ 1/2)80, between the ground
and first excited eigenenergies of the ring, equal to 219 GHz. The corresponding almost
sawtooth screening current pattern is shown in figure 5.

We note that screening current patterns,80-periodic in the external flux, can also be
generated from the quasi-classical description of the SQUID ring in which the ring is sited at
or very close to the minimum in its potential as the flux is varied [20, 21]. Thus, the almost
sawtooth pattern of figure 5, inferred from the ground-state solution of the TISE, would
be close in functional form to that calculated quasi-classically in the (inductive) regime
given that the parameterβ (=2π3Icrit/80)→ 1 from below. If only the ground states are



9960 R Whiteman et al

invoked, as is the case for the data reported in this paper, then, for very similar sawtooth
screening current patterns(Is(8x)), both the quasi-classical (i.e. the resistively shunted
junction plus capacitance—the RSJ+ C—model where the capacitance is large (typically
≈10−13 F for point contacts)) and quantum approaches will yield very similar small- (rf-)
amplitude adiabatic modulation frequency shift patterns (see (2.9) and (2.12)). However,
it must be remembered that in both the quantum and quasi-classical models the ring–tank-
circuit system is highly non-linear in its dynamical behaviour—particularly so whenIs(8x)

is close to being a sawtooth. In the quasi-classical model the non-linear properties of the
coupled system tend to act against the SQUID ring following the minimum in its potential
adiabatically. This is strictly not the case for the quantum model provided that there is
negligible superposition mixing in of higher states. Clearly, these non-linear effects will
be minimized if the rf amplitude is made very small(in experimentsµϕ ≈ 80/100), as is
the case for the frequency shift patterns. By contrast, non-linear effects will be strong in
the large-rf-amplitude (µϕ ≈ a few80) regime required to observe SQUID magnetometer
dynamical characteristics of the type shown in figure 3. It is here that the quantum and quasi-
classical models differ strongly. In comparing the two models (with a tank circuit), the full
non-linear RSJ+C approach will generate a given large-amplitude dynamical characteristic
starting from a much more rounded outIs(8x) than is required to produce a very similar
characteristic in the quantum model. This means that even if a reasonable fit can be made
to large-rf-amplitude experimental data using the RSJ+ C approach, no such fit can be
made to the small-rf-amplitude dynamics where the computed frequency shift may be a
factor of 5 or more smaller than that observed experimentally [22]. By comparison, given
a close-to-sawtoothIs(8x) (which can be inferred from frequency shift data), the quantum
model accurately reproduces both the small- and large-amplitude dynamics. Furthermore, in
the presence of applied em fields of high enough frequency/amplitude, superposition mixing
between the ground and first excited eigenstates occurs in the quantum description. In this
case much richer frequency (and amplitude) shift structure can develop which cannot be
generated in the quasi-classical model. As we have reported recently [9], we appear to have
observed aspects of this rich structure at applied em frequencies and flux amplitudes at
which, in the quantum description, non-adiabatic (pumped superposition mixing) behaviour
should be observed. Though of obvious interest to our discussions, we emphasize that such
non-adiabatic behaviour forms no part of the investigations described in this paper.

The minimum splitting frequency of 219 MHz is a first approximation. The presence of
4.2 K tank-circuit noise [17] means that the experimentally determined frequency response
peak at around8xqstat= (n + 1/2)80 is broadened. Hence, the underlying, and sharper,
response in the absence of noise rounding corresponds to a smaller value of this minimum
splitting frequency (and a slightly larger value of ¯hν). Thus, for particular values of3
andC, and in the presence of 4.2 K noise originating in the (classical) tank circuit, we
have solved the ring–tank-circuit equation of motion (2.5) to determine the best-fit value
of h̄ν which would yield the screening current pattern of figure 5. We found this to be
0.0782

0/3 with a corresponding minimum splitting at8xqstat= (n+ 1/2)80 of 144.6 GHz
(2.07 mm free-space wavelength ). We therefore infer that the noise-rounded data fitted by
h̄ν = 0.0682

0/3 (figure 5) are equivalent to an underlying ¯hν = 0.0782
0/3. We note that

the small-amplitude reactive technique is sufficiently sensitive to pick up on these small
corrections in ¯hν.

In our quantum mechanical description of the SQUID ring we have made use of
the simple (single-moded) lumped-component Hamiltonian (2.2). Now, in principle, a
distributed circuit model would be preferred when considering the full dynamics of the
ring. This subject has been discussed extensively by us in a recent series of articles [5,
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13, 14]. However, this paper is only concerned with the properties of the ground state of
the lowest-energy mode of the weak-link ring. The lowest-energy state is parametrized in
terms of a few simple quantities (inductance, capacitance and critical current) which can be
derived from the distributed circuit model [5].

We note that in computing the eigenenergies of the SQUID ring using the Hamiltonian
(2.2), the parameter 1/

√
3C defines an energy scale, but does not define the resonant

frequency of the SQUID block in the absence of the weak link. This parameter is related
to the effective inductance and effective capacitance of the SQUID block, but the effective
capacitance should also include a term which is dependent on the critical current of the
weak link [5, 13, 14]. Hence, the natural resonant frequency of the block in the absence
of the weak link will be different to the parametrization of the field energy(÷h) in the
presence of a weak link.

There is one further point that should be made. With almost sawtooth screening current
patterns, as is the case in the experiments described in this paper, the non-linearities
which drive the adiabatic modulation of the SQUID ring are very close to half-integer
bias flux (8x = (n + 1/2)80) where the frequency separation(×h) between the ground-
and first-excited-state eigenenergies is a minimum. This is where there are significant
superpositions of the quantized thick-ring flux states. By contrast, for almost sawtooth
ground-state screening current patterns, the ring is essentially in a flux eigenstate at integer
flux, 8xstat= n80. From this viewpoint we would therefore argue that it is the minimum
splitting frequency at8xqstat= (n+ 1/2)80 that is relevant.

Figure 6. With the same experimental conditions and circuit parameters as in figure 4, the
effect of monochromatic radiation at 290 MHz on the ground statefr0(8xqstat), where8em

has been incremented in stages of 0.0380 at every80-increase in8xqstat—shown in black.
The adiabatically modulatedfr0(8xqstat) pattern computed using the best-fit〈Is(8xqstat)〉0 of
figure 5, the circuit parameters of figure 4 and a8em incremented in steps of 0.0380 from 0 to
1.0480—shown in red.

In any modelling of the modulation of a quantum mechanical SQUID ring by an external
em field it is, of course, important to determine whether this involves just the ground state,
or if this field is of high enough frequency and/or amplitude to mix in excited states of
the ring. We can check this quantitatively by solving the TDSE for the system if we
know the value of the minimum splitting frequency between the ground and first excited
eigenenergies of the ring. In this situation we need only consider the effect of the em field



9962 R Whiteman et al

on the ground-state screening current. With this in mind, we show in black in figure 6(a) the
effect of an external 290 MHz em field on the peak frequency and peak amplitude patterns
of the ring–tank-circuit system of figures 3 and 4. Here,8em was incremented in steps of
0.0380 every time8xqstat reached an integer-flux staten80, andfr0(8xqstat) andAr0(8xqstat)

were then plotted over a complete80-period. This process was repeated many times to
build up the dependence of these quantities on both8xqstat and8em. Experimentally, the
modulating em field was fed to the SQUID ring by means of a weakly coupled microwave
triplate-electrode structure [23] comprising the two, plane-parallel central sections of the
two-hole SQUID ring with an insulated third strip electrode positioned between them. This
scheme allowed for relatively broad-band coupling. The triplate electrode was fed via a
50 � microcoaxial cable connected to an external frequency synthesized source at room
temperature. As can be seen, the effect of adiabatic em modulation, with incremented
amplitude increases every80-period in8xqstat, is to build up a very distinctive, Bessel-like
frequency shift pattern. With an experimentally determined effective minimum splitting of
144.6 GHz (taking account of the 4.2 K noise present in the tank circuit), and with theκ = 0
and 1 eigenenergy structureEκ(8x) appropriate to the data of figure 4, we find that for
an em frequency of 290 MHz there is absolutely negligible superposition mixing between
these two states up to the end of the data run in figure 6 (8em = 1.0280). We therefore
used the ground-state screening current pattern of figure 5 (in the form of a look-up table)
to compute the modulated current (2.9) and susceptibility (2.10).

For weak ring–em-field and ring–tank-circuit coupling this adiabatic modulation can be
modelled very precisely in terms of equations (2.12), (2.9) and the frequency shift expression
(2.6), provided that we know〈Is(8x)〉0, 8em andK2. In figure 6(b) we show in red the
computed adiabatic modulation frequency shift pattern for the SQUID ring–tank-circuit
system of figures 3 and 4 (with the best-fit screening current pattern (figure 5) sampled
as a look-up table), where8em has been incremented in steps of 0.0380 every80-period
in 8xstat over an amplitude range of 0 to 1.0480 andfR(measured) = 23.211 MHz. The
correspondence between the theoretical and experimental modulation patterns offr0(8xstat)

is quite apparent. We note that the data of figure 6(a) for SQUID rings with almost
sawtooth screening current patterns (exemplified by figure 5) are totally typical of adiabatic
modulation. In our experiments, with data taken on over one hundred such SQUID rings,
these modulation patterns were always observed when the applied microwave frequency
was small compared with the estimated frequency difference between the ground- and first-
excited-state eigenenergies. In fact, this adiabatic modulation has been used by us to set
the basis for, and contrast with, the onset of non-adiabatic (mixing between the ground and
first excited eigenstates) at much higher frequencies [9].

As is clear from the screening current pattern of figure 5, the response of the SQUID ring
to an external flux can be extremely non-linear. Taking just the case of the ring interacting
with the time-dependent flux generated in a rf tank circuit, the back reaction of this current
response on the tank circuit leads to distinctive non-linear phenomena. These have been
the subject of several of our recent publications [17] and form part of a distinct branch
of non-linear dynamics [24–26]. In particular, the whole of the resonance lineshape, both
the peak frequency and peak amplitude, of a coupled ring–tank-circuit system depends on
the static bias flux applied to the ring. This can be seen in the data of figure 4(b) where
the peak amplitudeAr0 is a strongly non-linear function of8xqstat, with a minimum at
the half-integer bias. It was consequently of considerable interest to try to determine the
effect of changes in the strength of the coupling between the ring and the em field on the
adiabatic modulation pattern. We therefore needed both to be able to adjust this coupling
in a controlled manner and to measure its strength. This was achieved by following the
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Figure 7. The experimental unmodulated frequency
shift patternfr0(8xqstat) for a SQUID ring coupled to a
tank circuit driven at 21.307 MHz withK2

(rf ) = 0.0027
andT = 4.2 K.

Figure 8. For the same system as for figure 7 the adiabatically modulatedfr0(8xqstat) for an em
frequency of 330 MHz fed through a uhf tank circuit resonant at 330 MHz. Here,K2

uhf
∼= 0.001

and the the rf probe frequency is 21.307 MHz at an amplitude ofϕ = 80/60, with again
K2
(rf ) = 0.0027 andT = 4.2 K.

procedure already adopted at rf, i.e. a tuned coil was introduced into the second hole of
the niobium SQUID, this time resonant at uhf (330 MHz). As with the resonant rf probe
circuit, the coupling of the uhf circuit, acting adiabatically on the SQUID ring, could be
changed by moving its coil with respect to the hole in the SQUID ring. In figure 7 we show
the unmodulated ground-state frequency shift pattern for this second experimental SQUID
ring which contained both the tuned rf and uhf coils. Conveniently for our purposes in this
paper, the screening current response〈Is(8x)〉0 for this SQUID ring is very close to that of
figure 5. In figure 8 the effect of adiabatically modulating the SQUID ring, i.e.fr0(8xqstat),
with uhf (330 MHz) is shown. Here, the coupling between the ring and the external em field
is weak(K2

uhf
∼= 0.001) (as for figure 6), as is the rf probe signal (ϕ = 80/60). Clearly,

the modulation pattern of figure 8 is strictly comparable with that shown in figure 6(a). In
figure 9 the adiabatically modulatedfr0(8xqstat), equivalent to figure 8, but now for much
stronger uhf coupling strength(K2

uhf
∼= 0.03), is shown. Here, it is apparent that the non-
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linear behaviour of〈Is(8x)〉0 around8x = (n+ 1/2)80 has led to a change infr0(8xqstat).
Clearly, the very strong non-linear dynamical behaviour of the coupled system close to
half-integer bias has led to the reduction in the level of uhf impinging on the SQUID ring
in an exactly analogous way to that already observed at rf (see figure 4(b)). In turn, this
has led to the loss of the distinctive splitting feature found at small8em-amplitudes which
is quite apparent in figures 6(a) and 6(b) and figure 8.

Figure 9. As for figure 8, with the same adiabatic modulation frequency (330 MHz) but now
with K2

uhf
∼= 0.03, again atT = 4.2 K.

For the strongly coupled case, the reduction of the uhf power level impinging on the
SQUID ring, due to non-linear effects, can be modelled successfully by solving the ring–
uhf-resonator equation of motion analogous to (2.5) with the appropriate circuit parameters.
As an illustration, we present in figure 10 a computed example in which the ring (using
the screening current pattern〈Is(8x)〉0 of figure 5) is coupled to a 200 MHz resonator. In
figure 10(a) we show the actual uhf power impinging on the ring as a function of8xqstatwhen
the external power is incremented in steps of 0.0580; these increments appear as vertical
discontinuities. For each external uhf power level,8xqstat has been swept through one flux
quantum, centred on80/2. In figure 10(b) the half-integer power dips of figure 10(a) have
been invoked to calculate the theoretical frequency shiftsfr0(8xqstat), using the screening
current pattern of figure 5. This frequency shift pattern compares well with the form of the
experimental data shown in figure 9.

Again, as with the modelling of the adiabatic modulation data of figure 6, and given that
the small splitting screening current pattern relevant to the data in this figure is essentially
the same (i.e. essentially the sameκ = 0 and 1 eigenenergiesEκ(8x) in the quantum
model of the SQUID ring), we can solve the system TDSE. We find, once again, that there
is negligible superposition mixing between the ground and first excited states at the em
frequencies of 330 MHz up to the end of the data runs in figures 8 and 9. Thus, for the
experimental data presented in figures 8 and 9 we need only consider the modulation of the
ground state by the em field.

It is clear from a comparison of the experimental data, and the computed adiabatic
responses of a SQUID ring to electromagnetic radiation, that the functional form of the
screening current pattern (calculated from the quantum model of the ring), combined with
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Figure 10. (a) The computed actual power impinging on the SQUID ring as a function of
8xqstat with the external power being incremented in steps of 0.0580; for each external power
level 8xqstat is swept through one flux quantum centred on80/2. The vertical jumps in this
figure are where the external power has been incremented in steps of 0.0580. (b) The theoretical
frequency shift patternfr0(8xqstat) calculated using the half-integer (i.e. at8xqstat= (n+1/2)80,
n integer) power dips shown in figure 10(a).

the non-linear equation of motion (2.5), provides a powerful and quantitative description of
the coupled ring–tank-circuit system in the adiabatic regime.
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Appendix

As has been discussed at some length in the main part of this paper, the frequency shift
technique allows us to monitor the change in the resonant frequency of the rf tank circuit
coupled to the SQUID ring, and hence the magnetic susceptibilityχκ of the ring, as a
function of the quasi-static bias flux8xqstat. With the application of an em field of much
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higher frequency than that of the very-small-amplitude rf probe signal to the SQUID ring,
χκ becomes a function of both the quasi-static and em components of the applied magnetic
flux. The SQUID ring, with an estimated minimum splitting frequency close to 200 GHz
at 8x = (n + 1/2)80, can clearly follow the oscillations in the external em field, with
the ring screening current and susceptibility varying concomitantly. However, the tank
circuit, with a resonant frequency of around 20 MHz, cannot respond in real time to such
rapid changes in the susceptibility and therefore ‘sees’ an average value. Since the em
field applied to the SQUID ring is sinusoidally time dependent, the average is not equally
balanced. Indeed, since more time is spent near the maximum excursions in the em flux
amplitude than elsewhere in its cycle, the values of the ring susceptibility in these regions
contribute disproportionally to this average.

Figure A1. A graphical representation of the adiabatic modulation showing the effect of micro-
waves (approximated by a square wave) on the ring magnetic susceptibility for microwave flux
amplitudes of (a) 0.180 and (b) 0.280, both peak to peak.
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Figure A2. As for figure A1, with the microwaves approximated by a square wave, but with
microwave flux amplitudes of (a) 0.480 and (b) 180.

It is possible to demonstrate this weighted effect on the average susceptibility which is
monitored at rf simply by approximating the sinusoidal em oscillation by a square wave so
that the maximum excursions (plus and minus) are occupied for the whole cycle. In figures
A1 and A2 we illustrate graphically how the average value of the susceptibility arises. It
can be seen that as the em flux amplitude is increased, the average susceptibility at the
half-integer bias flux(8xqstat= (n+ 1/2)80) becomes progressively lower than the actual
susceptibility. At sufficiently large em amplitudes, the nature of the weighting causes the
average susceptibility at the half-integer bias to fall below the average value on either side.
The effect of this is to generate a second feature. When the em flux amplitude is increased
to 80, peak to peak (figure A2(b)), the average susceptibility recovers the periodicity of
the actual susceptibility but the functional form is shifted by80/2 in 8xqstat. In the case
of this simple square-wave example of adiabatic modulation, the maximum value of the
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susceptibility is also recovered. However, when the microwave waveform is sinusoidal in
time, the average is obviously not set completely by the value of the susceptibility at the
peak excursions in amplitude of the em cycle. It follows that for sinusoidal microwave
modulation, the maximum average susceptibility is always slightly less than the maximum
in the actual susceptibility.
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